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ABSTRACT 

A ccsnplete logistical planning model of a firm or public system should 

Include activities having to do with the procurement of supplies. Not in- 

frequently« however, procurement aspects are difficult to model because of 

their relatively complex and evanescent nature. This raises the issue of 

how to build an overall logistics model in spite of such difficulties. 

This paper offers some suggestions toward this end which enable the procure- 

ment side of a model to be simplified via commodity aggregation in a 

▼controlled*' way, that is, in such a manner that the modeler can know and 

control in advance of solving his model how much loss of accuracy will be 

Incurred for the solutions to the (aggregated) overall model. , 

\ 
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I.     INTRODUCTION 

In this papnr the term   ptwcuAmtnt    is used in a broad sense that 

includes materials management of parts and raw materials  for a manufac- 

1 turing firm, the acquisition of goods for subsequent distribution by a 
j 
I     ) wholesale firm,  the procurement of supplies and materials by a service org- 

anization      and similar situations.    The essential point is that we are 

addressing the 'Initial" rather than the "final" stage of a logistics system. 

See,  for instance, the recent book by D. Bowersox   [21 which makes the dis- 
I 

tinction in terms of material management (supplier-oriented) and physical 

distribution management (customer-oriented). 

I  j Whereas it is the large number of customers and their ordering 

idiosyncrasies that tend to make the final stage of a logistics system 

hard to model, it is the large number of suppliers and items and sometimes 

I the constantly changing patterns of procurement that frequently make the 

initial stage difficult to model. Aggregation of customers on a geographic 

basis into customer zones and aggregation of delivered products (or 

|  ) services) into product groups are commonly used to simplify the final 

i 
| stage of a logistics planning model. Similar aggregations can be used to 

I 
f simplify the initial stage, but satisfactory simplifications may be more 

I  , difficult to achieve because of the influence of differential supply costs 
I 

among suppliers and the greater degree of uniqueness as to which suppliers 

,| provide what. These influences seem to call for a relatively greater 
I 
I 

I amount of detail to be preserved in the procurement stage of a planning 

I 
model. Unfortunately, this could require the preparation of unduly de- 

tailed procurement forecasts — which suppliers will be able to supply 

1 
) what items at what prices in what annual quantities.    The difficulties of 

I   ' 
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assembling this data could be out of proportion to the relative importance 

of procurement as a component of the total logistics planning model. Even 

worse, it may not be sensible to impose strict model control in the tradi- 

tional linear programming sense over procurement activities at so great a 

level of detail. 

A reasonable response to these possible difficulties is to take a more 

flexible attitude toward the modeling of procurement than is customary 

eunong devotees to mathematical programning. Namely, look upon the procure- 

ment pattern as an  aspect of the problem that is partly given objectively 

and partly under the analyst's control as though it were a policy parameter, 

view the procurement pattern as something whose influence is as much to be 

understood as it is to be "optimized". 

The aim of this paper is to provide a rigorous framework within which 

this flexible modeling attitude can be exercised. We are particularly in- 

terested in ä priori error bounds concerning the accuracy of the full 

logistics planning model as it is influenced by aggregating procurement 

items. So far as we are «ware, our results along these lines eure without 

precedent. 

A companion paper  [5]    develops similar results in the context of 

customer aggregation. 

:_;i-(i,;:-■.■■ w-'..^ .■.■j-ju.^tz.-^: Xthi^^&if^tft^l'n*.^ 
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II.      MODELING STRATEGIES 

As a point of departure,  consider the following logistics planning 

model. 

Plamu.wg Model  p 

(1) minimize I    c... x.  + F(y,2) 
x,y,z ijk  •'   "' 

(2) subj. to     S. .  < E x. .  < S. . , all i j 
"ID — ^ 13K — i3 

(3) E xi.k - I  Dityk£ . all i k 
j      *• 

(4) E y^ » 1,   all Ä 

(5) xijk >_ 0 , all i j k 

(6) y  ^0 ,  all M  and (y,z) e U . 

The following interpretations will be used: 

i  indexes procurement ^to"*  (raw materials, parts, 

finished goods, etc.) 

j indexes geographical pn.ocjuAme.nt zonu 

k indexes the iacÄZLtieA    being supplied 

I indexes cu&tomeM 

x. .. a variable giving the annual amount of item i procured 

from zone j for facility k 

a variable giving the fract 

customer I   (for goods or services) satisfied by facility k 

y .  a variable giving the fraction of the annual needs of 

z  a vector of additional (possibly logistical) variables 

c. ..  unit cost of procurement plus transportation associated 

with the flow x. ,, ijk 

:'..  i    ... ■^.. ...'..■ ■. -  ....^ ■:.,'■.... .i-~,. . ..L-^ i ..— .i- L^ ,_,:,.-3..^^ I-..-.' iT.^.'-. '.-ii, :. . ..^. .4... TV" :. ■.. . ^ . . ■ .. ^ ■.. > j.:. .^j«Miitiiiiai.»-|ia».'jalilMmiii,aiMiMi.,-h.-,,.,. ,,,.I^....^^^-^MU...... ...^^..lM^.i^.^...^...j^^m^ljj^^t^ 
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F (y,z)     the total annual costs associated with   (y,z)  exclusive 

of procurement and inbound transportation  (typically, 

facility-related costs plus outbound transportation 

costs) 

S..(S.,) a lower (upper) limit on the annual amount of item i 

procured from zone j (partly given and partly at the 

analyst's  discretion) 

D »       the    amount of item i   required to satisfy the total 

annual needs of customer t 

ft      a constraint set that must be satisfied by  (y,z). 

It  is understood that a list i      of allowable triples   (i,j,k)   is given to 

reflect which procurement zones can provide which items to which facilities, 

and a list L    is given to specify which facilities can serve which customers. 

All sumnations and constraint enumerations run only over allowable combin- 

ations.    For instance, the enumeration in  (2)  over "ij" runs over the 

pairs  (i,j)  such that  (i,j,k)   cL    for some k. 

Constraints   (2)   control the procurement pattern.    An historical pro- 

curement pattern  (or some other preconceived pattern)  can be enforced by 

taking corresponding S. .  and S    's    to be the same or nearly the same. 

The latitude for departure from the preconceived pattern increases as 

Si ■  ~ §..1 increases,    A necessary condition for feasibility is 1]      -13 

(7) EJS..     <    20..   < E S. .    for all i . 
j    ij    "    A 1Ä      j    i3 

Hie objective function (1) gives the total cost associated with 

logistical activities. We have already discussed (2). Constraints (3) 

specify that each facility must receive exactly enough of each item to 

'"^'^^"^•'nirriwi'iti:i,MiWi)ijrTratwrw,
lT-if''rr--—wummmaeMim 1 

aaiitfMMiaft^MiaMiiigi^^ 
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satisfy  tho needs of the customers it serves.    This requires that the goods 

or services demanded by each customer can be converted into corresponding 

requirements for the constituent items   (it is immaterial whether the faci- 

lities do manufacturing or distribution or service or some  combination 

thereof) .    Constraints   (4)   specify that the full needs of each customer 

must be satisfied.    Constraints   (5)  and  (6)  impose whatever other require- 

ments on the variables »ay be needed for system feasibility • 

Observe that for fixed y and z,  the optimization over x separates into 

independent subproblems  for each i — each a slight generalization of the 

classical minimum cost transportation problem. 

Because of the complete generality of F and fJ   ,  the model could oe set 

up to determine the  least cost facility locations satisfying a desired 

level of customer service.    Normally this would require that F be discon- 

tinuous in order to accomodate fixed costs, or some binary z-variables 

could be introduced to achieve the same effect.    The model could also be 

set up to provide for multiple commodities flowing to customers from the 

facilities,  unique assignment of customers to facilities for certain 

coitmodlties, and many other problem features.    We prefer to leave the 

model in its general form (1)  -   (6) because these and many other special 

cases are thereby treated simultaneously with minimum notational complexity. 

The model as stated is actually just a point of departure for the 

models we actually wish to study.    Its  chief shortcoming is that it 

may involve too great a level of detail regarding procurement from the 

viewpoint of policy and also sheer size.    Consider first the policy aspect. 

Model P places limits on the procurement pattern   (via  (2))  on an item-by- 

item basis.    Except for items of major importance, this seems like an 

actatt H «i-jirT'iJiVi; .Yii^t j .frf^fi j; ^-j i . ..-ji.^.^.MiAMiir^ifri.M^^ 
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excessive degree of control and may not even be meaningful in situations 

where suppliers are changed frequently on the basis of current price and 

availability.  It would make more sense when there are many items of small 

import-ance to aggregate some of the constraints in (2) .  Suppose this is 

done for some subset I of items. The result is 

Vlajinlng ModeZ  P 
I 

The same as planning model P, except that  (2)  is replaced by 

(2,1) 

(2.2) 

( 8 ) 

S. . < E x. .  < S.  , all i j with i t 1 -iD - k 13k -  i] ' 

ST . 1 2  x   < ST  , all j ,  where 
1,3        iel  i:,K     '3 

k 

ST . »  Z      S. . and  S, . »  I      S. . . —ifj   . T —ii     I,i   . T  13 J   IEI   J
       

J
   iel   J 

This version seems more reasonable from a policy standpoint in that th«. 

procurement pattern for items 7 is now stipulated on em aggregate basis. 

The numbers S, . and ST . would be interpreted rather freely since their 

formal constituents S, . and S. . might be poorly known or perhaps even ill- 

defined. 

There is, of course, a natural generalization of P, that aggregates 

the procurement pattern constraints for several subsets of items. The 

analysis of this generalization is a simple extension of the results to be 

obtained for P, (see the Remark in Appendix 1). 

Model V,  is better from a policy standpoint but it still may be too 

large. The number of variables is unchanged, although the number of type 

mmtimmumimmum MOMMMIWWMWIMMIWniliii™  "- ' 
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(2) constraints has diminished.  Moreover, a possible new difficulty arises 

in that the mathematical structure of P, is more complex than that of P. 

This is due to the fact that aggregating the type (2) constraints over id 

has the effect of coupling together what previously was a collection of in- 

dependent transportation-like subproblems in the x-variables when y and z 

are fixed. The new coupling tends to diminish the computational effective- 

ness of solution methods that exploit the natural separation into sub- 

problems when y and z are held fixed temporarily (e.g., methods based on 

Benders decomposition [4]). The nice structure of P could be restored, and 

the size of P, much reduced, by completing the aggregation with respect to 

items I begun in the passage from P to P, . This involves replacement of 

the variables x. .. with iel by aggregate variables ^ .. , say, so that the 

following single transportation-like subproblem replaces the coupled sub- 

problems of Pj for fixed y: 

Minimize    Z    b.. C4V 
K>o jk  3K 3K 

subj.  to 

(2.2A) SM<    Z     ejk<    SM     ,     all j 

(3.1) E     **' M    DUyW'allk   ' 

where the b    's are plausible surrogates for the c.     's over iel   . 

variable ^..   is interpreted as a surrogate for I      x. .. , and (3.1)  is inter- 
jk ieI      iDK 

preted as requiring facility k to receive enough of the items in I to meet 

its needs in the aggregate. 

■     ■      '■    ■    ■■:-—^^^^M 
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This further aggregation of Pj leads to 

Planning Model Pj b 

J-T  h r  + F(VIZ) + My;b) (9)    Minimize   I    * cijk xijk +Ejk h.^k + F(y, ) 

x,y,z,5      i«1   3K 

subject to 

(2.1) §..  <    l*w±   Sij <    S,     ,    all i i j with i ^ I 

{2.2A) 

(3.1) 

(3.2) 

(4) 

(5.1) 

(5.2) 

(6) 

all j 

5    ^'-a^'    alli.withi.I 

x        >_0,    all i j  k with i ^ I 
ijX 

■jk    - 
> 0  ,    all j k such that i j k exists for i  e I 

y      >_   0  , all kÄ    and    (y,z)    e n 

where we define 

(10) D 1,4 
I       D 

id 
iJl 

linear function of y designed to  "coirpensate" 

.ce of b. 

is identical to that 

and where My;b)  is some 

for    aggregation error in spite of the arbitrary choice of b. 

Notice that the mathematical structure of P, , 

of P  (with the addition to the objective function of a new term linear in 

', which seems innocuous enough).    P, ,_ 1 ,b 
is smaller in that the itens of ^ 

*!'   5 

ki,^„iii.-..:ri--v'.^:i..-...',l,ij..-.,-,i«;^..j^,..'...;^^.; ^^■^Ä'i^.v _. ^^^Ld  -—^-^—^— !B^5H -  ..^   ZT..^ 
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have been aggregated together throughout. 

The major task at this point is to understand the relationship between 

P, and P, ... Our main results in this direction are summarized in the next 
I     i »b 

section. 

.^^mmmmmmmmmmmämmmmmiiii njuguniigi lüBiiü --r^iiitiHiiaiiviiaiiMM 
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III.    THE   RELATIONSHIP  BETWEEN PLANNING MODELS P ^   and P j  b 

As  it turns out, a natural choice for the L  function exists for which 

a nearly ideal  relationship can bo established between Pj and PT .    • 

In particular, an ä priori bound can be obtained on the 

difference between their optimal values.    Such a bound can be obtained for 

any choice of b,  and in fact furnishes a useful cxiterion for making this 

choice. 

It will be convenient to refer to the so-called Ramje function, which 

is defined for any collection {ot  ,...,a  }    of scalars as 

Range {a . } ■ Max {a  }  - Min    {a.} 
l<jj<n      •'        iU)ln        ^ ilJlP    ^ 

The notation v(') will  refer to the optimal value of an optimization 

problem. 

MflU-K JhcoKm-     Assume that the same jk links exist for every item in some 

subset I  .    Let b     be chosen arbitrarily for these links, and take the 

compensation function L to be 

(U) Uy.-b, - lA   DU Mi« (cijk - b^ yw . 

Then 

(12) V(PI b5  iv(PI) 1   V(PI b5  + €b  '      Where 

(13) €   -E    Max {  E    Du Range (c      -b    }}. 
I      k      lei 3 

Moreover, a complete €  -optimal solution of P, can be obtained 

from any optimal solution  (x,y,z,E,)  to P, .   by using  (x,y,z)   as is and 

supplementing it by values for the missing x. .    for i e T   according to 

the disaggregation formula:     for all ijk with i e I, put 

MlkiiS-n-.a^m»iw,ai,^.......Jjjj..;^-,. ;.;.j ■"■■'•■-- •--"-^-- —-—riii'irimi^MmiMiiHO 
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(14) x. ijk 

ifsk> 0 

if
 Sic ■ 0 

The proof is given in Appendix 1, along with a generalization to the 

case where several subsets of items are aggregated simultaneously.    Exten- 

sions    accomodating       suboptimal solutions to PT , are easy to 
l ,b 

obtain. 

This theorem is a satisfying one in a number of respects.    First, it 

allows for an arbitrary aggregation set 7 subject to the requirement that 

the items involved have a common set of transportation links  (otherwise 

feasibility difficulties could be encountered in trying to recover a feas- 

ible solution to Pj  from one of P, . ).    Second,  it allows an arbitrary 

choice of b, which acoomodates any heuristic rule that may be appealing in 

a particular situation  (e.g., some weighted mean of c...   over i e 7). 

Third,  it selects L  in such a manner that the aggregated problem is a 

relaxation of the original one in a suitable sense, thereby producing an 

underestimate of the optimal value of the original problem.    Fourth,  this 

underestimate has an error that is known ä priori to be no larger than a 

calculable number €    .    Fifth, solving the aggregated problem is guaranteed 
o 

to furnish a complete € -optimal solution to P- (one can very likely oonclude 
"'     b L 

: HMWM^MWWW 
^■^»^^^^^^i.,.:,.^,.-....,.-.. .,.....,,. .,..  ..,..;■..;..... lll11ililil[i..^Jj^ '■'JiralMimiiil 
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that   this solution is e-optimal in PT for some e smaller than   e    — just take 
i b 

the difference between the objective function (1) evaluated at the feasible 

solution and the lower bound v(PT ,)). And sixth, the explicit formula for 
* »b 

e has a number of valuable applications. We now expand on this last point. 

An important question is how one should select b when a compelling 

heuristic choice is not available. The formula for e furnishes a natural b 

criterion:    select b to make e.   as small as possible.    Happily, this can be 
b 

converted to a linear programning problem by using standard tricks (mainly 

the representation of the maximum of a set of numbers as their least upper 

bound).    Thus the optimal b can always be calculated by linear programming. 

The e,-minimizing choice of b can sometimes be obtained analytically 
b 

if additional assumptions are imposed.    For instance, if the Do's are pro- 

portionally the same for i in I at every customer — i.e., if there exist 

proportions p.   (p,   > 0 for iel and      Z    P.,   = D   such that 
iel 

(15) 

Z  D 
iel 

p. for all iS, with iel 

U 

and D  >  I o  for some iel, then it can be shown that the optimal 
•l — . T ^i o 

o   iel 

choice of b is to take b. ■ c  .  for all jk. jK        loDK 

It is of interest to characterize the situations where £ = 0 is 

possible.     It is shown in Appendix 2 that a necessary and sufficient condi- 

tion for e.   to equal 0 for some choice of b is that there exist numbers 

3..   and y.,   such that 
Dk 'ik 

■tJ-i ital'Ä4«iHii.;wU'(M 

  ■ "  i 
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s S  + v   for all ijk with iel and k such that it 

is connected to some * with D^  0 

If this condition holds, then € » o is achieved by taking b., =3.,  for 

all jk (plus any constant depending only on k) with k such that it is 

connected to some I  for which I      D,  > 0 . The choice of b  is arbitrary 
iel  U jk 

for any k's left over. 

When might (16) hold? An important case occurs when    item i has 

a procurement cost y.  $/unit, and all items in I have the same unit in- 

bound transportation rate when measured on a per mile basis, say t, $/unit- 

mile.  If ♦■he distance from j to k is d.. , then 

(17) ^ik ■ 'i v * ri £or aU iJk "ith 161 

and (16) clearly holds. This case admits an easy generalization that still 

leaves eh"0: ty can  depend on j or k or both, and y.   can depend on k . 

Ji^^l^1-.^:^,V',ii:.^SAuiÄ.lti;^^l^.l.-^.J.U, .^.^^■^^^^^^^^^---■'■-»^«^^'^^■"^^^'-^^■■t^^^'^' 
^.«k^i*^-^. tvtogj*. umijijii 
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IV.     CONCLUSION 

We have achieved our goal of providing rigorous guidance to the modeler 

who wishes to consider aggregating a subset I of items in the procurement 

portion of a logistics planning model.    Assuming that the aggregate con- 

straints   (2.2)  offer adequate control of the procurement pattern, the 

modeler can obtain an ä priori bound from  (13)  on the amount of suboptim- 

ality tnat will be caused in the model by subsequently collapsing the in- 

bound tlows for i in I down to a single transportation-like problem that 

uses any plausible costs b.    for the aggregated items.     It bears emphasis 

that this bound can be calculated before optimizing the aggregated planning 

model, perhaps using rough preliminary data,  and hence is a useful tool for 

model design. 

The results attained can be used not only to study the effects of 

aggregation with a predetermined subset I of items,  but also to select I 

itself on the basis of small anticipated aggregation error.    This can be 

done by cluster analysis aimed at finding item subsets for which (16) holds 

approximately.    One way to precede is based on the following observation. 

Notice that if  (16)  holds exactly, then summing over j yields 

E c ijk 
j 3k 

jNiYik    for i k  ' 

j j | .   is the number of procurement zones supplying item i. where 

can be eliminated in (16) using 

Thus y 
ik 

'ik I  c 
ijk i B jk 

afe^ia>ftftlh'lV^ •ir''j—^"^^■^-^^"■•^-^^'■■■-■^^■"'-^■^■-^^^^^'■«'^«^*»*^^^ 

■oamitmmmmiittaätiiUmmi "-'^"''-■'i'riliiiilitlliB 
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to obtain 

(16)' c...   -    ^c,,,     =3..   - I &., for all ijk with iel and k 
ijk 13k jk       .     ]k 

I I j 11 . I I j 1 I . such that it is connected 

to some i with D.„ > 0. 

Conversely,   (16)'   implies that  (16) holds.    Hence   (16)   and  (16)'  are equiva- 

lent conditions.     The obvious clustering approach would be to identify with 

each item i a linearized vector V   with typical entry 

c. .,   - £ c. .. 13k i]k 
if link ijk exists 

a large number M otherwise. 

The V -vectors would then be clustered by some standard technique   [1]      to 

discover subsets of i for which the V  's are nearly identical.    These subsets 

of i would identify items which, if aggregated, would tend to have small 

aggregation error when an appropriate choice for b is used.    In fact, an 

appropriate choice for b would be a virtual by-product of most standard 

clustering schemes. 

A refinement would be to weight the V 's    or its components according 

to demand or some measure of the likelihood that a given link would actually 

be selected by the model for use. 
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APPENDIX 1:  PROOF OF THE MAIN THEOREM 

Let v(') denote the infimal value of any minimizing optimization problem. 

Lejnrna  1 [6]. Consider the two optimization problems 

(Q)   Minimize f (w)  subject to w € W 

(Q)   Minimize £(w)  subject to w € W , 

where f and  f are real-valued functions bounded below on a non-empty set W. 

(Interpret (Q) as the "true" problem and (Q) as the "approximating" problem in 

the sense that an  approximate objective function f replaces £.) Let e, and e 

be scalars (not necessarily nonnegative) satisfying 

(Al)   - 1 1 f(w) - f (w) <_ "i   for all w e W. 

Then 

(A2)  - S,  1   V<Q) - v(ß) 1 e 

and any optimal solution w of  (Q)   is necessarily   (e. + e)- optimal in  (Q) . 

Lemma 1 will be applied not to Pj in the  role of  (Q) ,  but rather to an 

equivalent version of Pj   , namely its "projection"   [3] onto the variables 

y,z,  and x with i £ It 

(Pj) Minimize      F(y,z)  +      Z      c...   x   .    +cpr   (y) 
x,y,z ij^I 

jk 

subj.  to (2.1), (3.2),   (4),   (5.1),   (6) 

where we define 

(A3)      97 (y) » Infimum     Z  c   x     subj. to (2.2) and 
1 ijk  1:,K i3K 

iel 

$ Xijk = Z
a  

DU ykÄ   '    a11 ik with i e I 

j a 

x. .,   > 0  ,     all ijk with i e I 
13k — 
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Make the identifications 

* 
w • the variables of (Pj) 

* 
W » the constraints of (Pj) 

* 
f(w) - the objective function of (Pj) 

* 
f{w) ■ the objective function of (Pj) with cp_ replaced by Tj 

where cp* (y) is defined as 

(A4)     cp  (y) ^ L(y;b) + Inf. Z    h..   KAV  subj. to (2.2A) and (3.1) 
1 C>0 jk ^ 3K 

with L as defined in (11) for arbitrary fixed b. The justification for 

(A4) is provided by 

Lmma. 2. Assume that the same jk links exist for every item in the subset I . 

Then 

(A5)     «Pj (y) 1 «Pj (y) 1 «Pj (y) + 6b / all (y^z) satisfying (4) and (6), 

where €  is defined as in (13). 
b 

Once Lemma 2 is established, conclusion (12) of the Main Theorem is at 

hand upon applying Lemma 1 using the identifications given above  and the 

obvious facts v(Q) - v(PT)  ■ v(P,} and v(Q) - v(P, J 
*      I */b 

Proof of Lemna 2. Introduce a supplementary nonnegative variable 5.. into 

(A3) for each jk link in existence for i e I , along with the supplementary 

constraints t.. ■ 2 x. .. and the supplementary terms b..?.. - b 5   in 
3K ^^j      1]K ]K   JK JK   3K 

the objective function.    From  (2.2) we see that additional redundant 

■■'lBiiiL^**','*—~~'^"—^'',*,'MM*MIMIMI'M'MMM*l",,'^l'*^-'''1--'-ar'l~"'^  "■'iiiMirrwtiiiiiiM 



- 19 

constraints   (2.2A) may be added, and from the demand constraints of (A3) we 

see that (3.1) may be added.    Clearly none of this alters the Inflmal value 

of   (A3).    Upon "projection" of the augmented problem onto the ^-variables. 

one obtains 

* 
(A3) 9T (y) - Inflmum E b^Cv + * (C»y) subj. to (2.2A),(3.1) 

K>0        jk 3K J* 

where the remainder term Is defined as 

R(C»y) ■ Inflmum I     ^j-^ - bjk^ Xijk 
ijk 
iel 

subj. to 

1 Xljk " I VU  ' a11 ik with i e I 

1
      xiil- ' 5-ik        '  a11 jk 

lei      ^L       Jk 

x.       >_   0,    all Ijk with lei. 1 JK 

It is easy to verify that 

R (y) £ R U»y) £ R (y) for all (y,z) satisfying (4) and (6) 

and C satisfying (2.2A) and (3.1), 

where 

R (y) S s /z DU Min {cijk - bjk}A y^S L (y;b) as defined in (11) 

R (y) - E 
kÄ 

(rE    D     Max { 
id    U    j 

cijk " bjk}l ykr 

Since R (y)   - R (y)   clearly is no larger than 

Du ^ Kjk - b
jk> " ^^ijk - V 1 

i   k      iel 

uMtJ^HtaMiiaM j^tiir-i-1- iteiaia BeaMBiiMiJiiililiitfliMliiiil^^ 
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Z Max 
l    k 

I^D., Range    tcijlt " bjk}] :e.   as defined in   (13) 
b 

for any y « 0 satisfying  (4) ,  we have 

(A 6) L(y;b)   <_   R(C,y) 1    My;b)  +   C   for all  (y,z)   satisfying  (4)  and 

(6)   and £ satisfying  (2.2A)  and 

(3.1). 

The desired conclusion  (A 5)    now follows easily from  (A3)    and    (A6).     This 

completes the proof of Lemma 2. 

Finally we come to the second conclusion of the Main Theorem.    Let 

(x, y, z, C) be any optimal solution to P,  .  and generate x...   for i e I 

according to 

ijk 
I Dit 

9Kl C      ,      all ijk with i e  I, 
jk 

This "any feasible disaggregation of C " construction is possible because 

of the assumption that the same jk links exist for all i e I   .    We must 

show that  (x~, x+, y,  z)  is feasible and  €-optimal in Pj   .    The verifi- 

cation of feasibility is straightforward.    To verify € -optimality we need 

to show 

„+ 
ijk ijk ijk  i:jk  ijk iDk        -   I    b 

i*I iel 

This is em obvious consequence of (12) and 

v(P7 J  < E c... x... + F(y,2) < v(PT . ) + €  • 
'b  ~ ijk i^k    ^ ' 
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This last result, in turn, is a sinple oonssqusnc« of thes« two facts: 

,1 -ijk h*+ ^VJR 
+ F(*'2) + L(^b) - ^i,»*' 

ijK jK 
mi 

which holds by the definition of (x~, y, i,t ),  and 

My»*»! I (cijk-bjk)x;jk < L(y,b)+€b , 
i jK 
iel 

which   can be sinplified to 

L(';b)l4   ciJK ^jk ^k V Sk 1 ^;b) + %. 
itl 

This completes the proof of the Main Theorem. 

Remark  .  It is a straightforward matter to generalize the Main Theorem to 

cover the case where several disjoint subsets of items are to be aggregated, 

1     H 
say I ,...il . The analogs of Pj and P* .  should be obvious. Assume for 

h - 1,...,H that the same jk links exist for every item in subset Th and 

choose b"   arbitrarily for these links. Define 

.h   .    Ji.  A E L   (y;b ) - k£ t" D" 1 "i" <ei» - "jV J y« • 

Then 

H v(analog of Pj b)    < v(analog of Pj)    £ v(analog of Pj b) +eb 

where 

H 
£b   -f^L1.    .ETh DU "f '"UK t   k   (h-l   itl -vj- 

and an  €    -optimal solution of the analog of P    can be constructed in the 
b H I 

obvious way.    Note that £    is smaller than the tolerance that would be 

obtained from H successive applications of the original version of the 

Main Theorem. 

""""     ■  1"^ 'w'*'<*ll''ll'?yi'?f*l*?fSf?f!**^ J.Z.i, ■ ......J..:J..-J.v.:.,^,.-..:....,.c- ■■■—■..^■^.'.^^ 
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APPENDIX 2t 

NECESSARY AND SUFFICIENT CONDITIONS  FOR ZERO AGGREGATION ERROR .» 

Proposition    e     » 0 in egression  (13)   if emd only if there exist numbers 

v.,   such that 

c. .. = b,. + Y^.   for all ijk with i z I  and k such that it is 
i]k   jk   ik 

connected to some I  with D.. > 0 , 

Proof.  It is easy to see that € ■ o if and only if ———— b 

D.0 Range (c . - b. }■ 0   for all possible ikA with i e I 
i*   .     ijk   ik 

(for ik£ to be possible, k must be 

connected to I  and ijk must exist 

for some j) 

which, by the nonnegativity of D.  and of the range function, holds if and 

only if 

(A7) Range (c. .. - b } 
j 

ijk   jk' 
for all possible ik with i e I and 

k such that it is connected to some 

£ with D,^ > 0 . 

Now the range function has the property that it vanishes if and only if all 

of its arguments are identical, and so (A7) holds if and only if numbers 

Y., exist such that 
ik 

Cijk " bjk " Yik 
for all ijk with i e I and k such that 

it is connected to some I with D..  > 0. 
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